Abstract
Rice (Oryza sativa) is one of the major agricultural products of tropical West Africa in general and Nigeria in particular. In this study ASPEN plus V8.8 was used to develop a thermodynamic model for the pyrolysis of rice husk. The model was validated and found to be accurate especially on the domain of oil and gas yields. It was used to study the effect of temperature on the product yield and oil composition. The fluid products increase with temperature and an optimum of 60% can be obtained from rice husk. The optimum oil yield was 44.2% obtained at 400°C. The synthesis gas was composed basically of hydrogen gas, methane and traces of higher hydrocarbons, the char consisted of carbon and silicon oxide ash while the oil was made-up of acidic organic compounds, aldehydes, pyrolytic water and others. At 600°C, the predictions revealed an oil composition of 84.7% acids, 7.9% pyrolytic water, 7.42% aldehyde and traces of alcohol and other compounds. The results from the thermodynamic predictions showed that rice husk is an excellent feedstock for the biofuels production via the thermo-chemical energy conversion route. The study has provided a useful framework for proper comparisons of the energy potential between different biomass feedstock.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have