Abstract

Insulation is an important material for energy conservation and frost heave reduction in cold regions. The thermal conductivity of the insulation materials is usually considered as a constant. However, their thermal performance degenerates due to the absorption of water. To describe the variations of thermal conductivities with water content, a thermal conductivity model for three-phase insulation material was proposed by considering the insulation material's porous and moisture absorption characteristics. A tortuosity correction was introduced to reflect the heat conduction path. Then, the measured results and the existed models were used to evaluate availability of the proposed model. Finally, the quantitative influence of the porosity, water content, and thermal conductivity of solid phase on the thermal conductivity of wet insulation materials was analyzed. The results show that there is close agreement between the predicted results of the new model and the measured ones, with the maximum relative error <15%. The model with tortuosity correction can effectively calculate the thermal conductivities of the insulation materials in a full range of porosity (from 0 to 1). The thermal conductivity decreases with the increase of porosity, but increases with the increase of water content. The solid phase's thermal conductivity has little influence on the thermal conductivity of the insulation materials. The study can provide an effective method to predict the thermal performance variation of the insulation material due to the effect of moisture content in cold regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.