Abstract

The merge-and-shrink framework is a powerful tool to construct state space abstractions based on factored representations. One of its core applications in classical planning is the construction of admissible abstraction heuristics. In this paper, we develop a compositional theory of merge-and-shrink in the context of probabilistic planning, focusing on stochastic shortest path problems (SSPs). As the basis for this development, we contribute a novel factored state space model for SSPs. We show how general transformations, including abstractions, can be formulated on this model to derive admissible and/or perfect heuristics. To formalize the merge-and-shrink framework for SSPs, we transfer the fundamental merge-and-shrink transformations from the classical setting: shrinking, merging, and label reduction. We analyze the formal properties of these transformations in detail and show how the conditions under which shrinking and label reduction lead to perfect heuristics can be extended to the SSP setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.