Abstract
AbstractA group is often construed as one agent with its own probabilistic beliefs (credences), which are obtained by aggregating those of the individuals, for instance through averaging. In their celebrated “Groupthink”, Russell et al. (2015) require group credences to undergo Bayesian revision whenever new information is learnt, i.e., whenever individual credences undergo Bayesian revision based on this information. To obtain a fully Bayesian group, one should often extend this requirement to non‐public or even private information (learnt by not all or just one individual), or to non‐representable information (not representable by any event in the domain where credences are held). I propose a taxonomy of six types of ‘group Bayesianism’. They differ in the information for which Bayesian revision of group credences is required: public representable information, private representable information, public non‐representable information, etc. Six corresponding theorems establish how individual credences must (not) be aggregated to ensure group Bayesianism of any type, respectively. Aggregating through standard averaging is never permitted; instead, different forms of geometric averaging must be used. One theorem—that for public representable information—is essentially Russell et al.'s central result (with minor corrections). Another theorem—that for public non‐representable information—fills a gap in the theory of externally Bayesian opinion pooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.