Abstract

A preliminary calculation of the chemical bonding adhesive interaction between metal surfaces is provided. In this first theory the Hohenberg and Kohn formalism is used to give the bimetallic adhesive binding energy versus separation. The close-packed planes of Al, Mg, and Zn are considered. The effect of simple overlap of the metal-vacuum distributions is determined. The importance of registry between contact surfaces is ascertained. A minimum in the binding energy curve is exhibited for all combinations. The theoretical predictions agree with trends in bond strengths taken from available experimental data. An insight into the mechanisms involved in metallic transfer is given. The relationship between adhesive energies, cohesive energies, and surface energies is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call