Abstract

We investigate the thermoelectric properties of graphene nanoribbons (GNRs) by solving atomistic electron and phonon transport equations in the nonequilibrium Green’s function formalism. The dependence of thermopower on temperature and chemical potential is compared to that of graphene, which shows the important role of quasi-one-dimensional geometry in determining the thermoelectric properties of a GNR. The edge roughness and lattice vacancy are found to increase the thermopower but decrease the thermoelectric ZT factor because the decrease in the electronic conductance outweighs the decrease in the thermal conductance and the increase in the thermopower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.