Abstract
The mechanism and kinetics of the reaction of hydrogen sulphide (H2S(1A1)) with hydroperoxyl radical (HO2(2A″)) on the lowest doublet potential energy surface have been theoretically studied. The potential energy surface for possible pathways has been investigated by employing Complete Basis Set (CBS), DFT, and CCSD(T) methods. Three possible pathways are suggested for the title reaction. The most probable entrance channel consists of formation of a hydrogen-bonded pre-reaction complex (vdw1) and two energised intermediates. Multichannel RRKM-Steady State Approximation and CVT calculations have been carried out to compute the rate constants over a broad range of temperature from 200 K to 3000 K to cover the atmospheric and combustion conditions and pressure from 0.1 to 2000 Torr. No sign of pressure dependence was observed for the title reaction over the stated range of pressure. We have shown that the major products of the title reaction are H2O2 and SH while at higher temperatures, formation of the other products such as H2O, HOS, HSOH and OH are feasible, too. Our calculated overall rate constant is in agreement with the reported experimental data in the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have