Abstract

The adsorption of 1-phenyl-2-aminopropane (amphetamine) on the (4,4), (5,5), (6,6), and (7,7) single-walled carbon nanotubes (SWCNTs) has been theoretically investigated. The molecule has been located in different modes including parallel, perpendicular, and oblique on the outer surface of carbon nanotubes. The physisorption of amphetamine onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region. The adsorption energies for the parallel and oblique modes found in the range of −1.13 to −1.88 and −1.27 to −2.01kcal/mol, respectively. Projected density of states (PDOS) and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than amphetamine molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.