Abstract
The surface wettability of a liquid on the inner and outer surface of single carbon nanotubes (CNTs) was experimentally investigated. Although these contact angles on both surfaces were previously studied separately, the available data are of limited help to elucidate the effect of curvature orientation (concave or convex) on wettability due to the difference in surface structure. Here, we report on the three-phase contact region and wettability on the outer surface of CNT during the dipping and withdrawing experiment of CNT into an ionic liquid. Furthermore, the wettability on the inner surface was measured using a liquid within the same CNT. Our results show that the contact angle on the outer surface of the CNT is larger than that on the flat surface and that on the inner surface is smaller than that on the flat one. These findings suggest that the surface curvature orientation has a noticeable effect on the contact angle at the nanoscale because both inner and outer surfaces expose the same graphite wall structure and the contact line tension will be negligible in this situation. The presented results are rationalized using the free energy balance of liquid on curved surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.