Abstract

A microscopic model analysis of the magnetic dipole (M1) properties of 239Pu nucleus, which is a fissile material not only used in nuclear weapons but also used in some nuclear reactors as a source of energy, has been performed. The microscopic formalism used in the study is based on the Quasiparticle Phonon Nuclear Model (QPNM) and includes an axially symmetric Woods-Saxon potential as a mean field, a spin-spin residual interaction as well as the symmetry-restoring forces for the rotational invariance of the Hamiltonian. The investigations have been carried out in two steps. Firstly, the theoretical value of the ground-state magnetic moment and quenching spin gyromagnetic factor have been determined and it has been found that the predicted magnetic moment show a good agreement with the experimental data. Secondly, the calculations of M1 transitions from ground- to excited-states have been carried out in the energy range 2-4 MeV. A satisfactorily good agreement is obtained from the comparison of the theoretical results with the experimental data for 2-2.5 MeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.