Abstract

AbstractIn this work, electronic properties and structure–activity relationship (SAR) parameters of 20 novel drug precursor 6‐acylbenzothiazolon derivatives with analgesic activity have been investigated theoretically by performing Austin Model‐1 (AM1) and DFT‐B3LYP/6‐31G (d) calculations with the aim to correlate the properties of each substance—particularly electronic properties and SAR parameters—with the biological interactions that are linked to their pharmacological effects. Their molecular properties were related to the biological activity of these drug precursor molecules. The relationship between octanol–water partition coefficient (log P) and each of the SAR parameters [ELUMO–HOMO, molecular volume (Vm), ionization potential (IP), electron affinity, electronegativity (χ), chemical hardness (η), chemical softness (S), electrophilic index (ω), and molar refractivity] present linear correlation except for IP and χ. This result suggests that there are future prospects for designing or developing new drugs based on the correlation between the theoretically calculated parameters. According to AM1 calculation, the values of heat of formation of 6‐acylbenzothiazolon derivatives are negative (exothermic), which shows that these molecules are thermodynamically stable. ELUMO–HOMO energy levels of the studied molecules are 4–5 eV, which also indicate that they are kinetically unstable. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.