Abstract

Energy relaxation from an excited phenyl group chemisorbed to the surface of a crystalline thin film of α-1,3,5-trinitro-1,3,5-triazacyclohexane (α-RDX) at 298 K and 1 atm is simulated using molecular dynamics. Two schemes are used to excite the phenyl group. In the first scheme, the excitation energy is added instantaneously as kinetic energy by rescaling momenta of the 11 atoms in the phenyl group. In the second scheme, the phenyl group is equilibrated at a higher temperature in the presence of static RDX geometries representative of the 298 K thin film. An analytical model based on ballistic phonon transport that requires only the harmonic part of the total Hamiltonian and includes no adjustable parameters is shown to predict, essentially quantitatively, the short-time dynamics of the kinetic energy relaxation (∼200 fs). The dynamics of the phenyl group for times longer than about 6 ps follows exponential decay and agrees qualitatively with the dynamics described by a master equation. Long-time heat propagation within the bulk of the crystal film is consistent with the heat equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.