Abstract
The present paper aims at a theoretical study of the forming limits of a sheet metal subjected to double strain path changes by using as reference material the AA6016-T4 aluminum alloy sheet. The simulation of plastic instability is carried out through the Marciniak-Kuczynski analysis. The initial shape of the yield locus is given by the Yld2000-2d plane stress yield function. The strain hardening of the material is described by the Voce type saturation law. Linear and several complex strain paths involving single and double strain path changes are taken into account. The validity of the model is assessed by comparing the predicted and experimental forming limits under linear and selected one strain path change. A good accuracy of the developed software on predicting the forming limits is found. A sensitive analysis of the influence of the type and value of the double prestain in the occurrence of the plastic flow localization is performed. A remarkable effect of the double strain path change on the sheet metal forming limits is observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have