Abstract

Electronic transport and switching properties of molecule-based magnetic tunnel junctions are investigated using the first-principles density functional theory and non-equilibrium Green function methods. As a result of being sandwiched between the ferromagnetic electrodes, a spin-polarization is induced in the nonmagnetic organic atoms. Magnitudes of the spin-polarizations in the trans-polyacetylene, cis-polyacetylene, terphenyl and pentacene chains are calculated and it is suggested that among these the pentacene molecules, because of showing a relatively higher magnetization can theoretically be more appropriate for utilization in spintronic devices. Furthermore, electrical switching capabilities of the junctions are studied and the results reveal that the pentacene junction due to having a larger ON/OFF ratio shows a better switching behavior. Finally, magnetoresistive properties are studied and it is shown that applying torsion can be an effective method to enhance and also adjust magnitudes of the magnetoresistances of the junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.