Abstract

Abstract Recently published experimental works on remotely bonded fiber Bragg grating (FBG) ultrasound (US) sensors show that they display some unique characteristics that are not observed with directly bonded FBG sensors. These studies suggest that the bonding of the optical fiber strongly influences how the ultrasound waves are coupled from the structure to the FBG sensor. In this paper, the analytical model of the structure-adhesive-optical fiber section, treated as an ultrasound coupler, is derived and analyzed to explain the observed experimental phenomena. The resulting dispersion curve shows that the ultrasound coupler possesses a cutoff frequency, above which a dispersive longitudinal mode exists. The low propagation speed of the dispersive longitudinal mode leads to multiple resonances at and above the cutoff frequency. To characterize the resonant characteristics of the ultrasound coupler, a semi-analytical model is implemented and the scattering parameters (S-parameters) are introduced for broadband time-frequency analysis. The simulation was able to reproduce the experiment observations reported by other researchers. Furthuremore, the behaviors of the remotely bonded FBG sensors can be explained based on its resonant characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.