Abstract

Using both mass spectrometry with intense femtosecond laser ionization and high-level computational methods, we have explored the structure and fragmentation patterns of dimethyl methylphosphonate (DMMP) cation. Extensive search of the geometries of both neutral and positively charged DMMP yields new isomers that are appreciably lower in total energy than those commonly synthesized using the Michaelis-Arbuzov reaction. The stability of the standard isomer with CH3PO(OCH3)2 topology is found to be due to the presence of high barriers to isomer interconversion that involves several transition states. Our femtosecond laser ionization experiments show that the relative yields of the major dissociation products as a function of peak laser intensity correlate well with the theoretical estimates for the energies of the DMMP+ decay via various channels. In contrast, the peak laser intensities required for observation of minor dissociation products exhibit no correlation with the computed decay energies, which suggests that barrier heights and/or excited electronic states of DMMP+ determine its preferred fragmentation pathways in an intense femtosecond laser field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.