Abstract

AbstractWe examine the possibility of controlling nanotube growth and simultaneously manipulating the nanotube properties by adding elements in minute amounts (such as nitrogen, phosphorous, and sulfur) that are different from carbon and the metal catalyst during the growth process. This procedure is shown to be capable of producing bamboo‐type morphologies, heterodoped carbon nanotubes, and Y‐junctions. This also represents a critical step toward tailoring properties and controlling nanotube architectures, thus promoting the development of novel materials with unusual electronic applications. The underlying formation mechanisms that lead to the observed structures and morphologies are elucidated using wide‐ranging electronic structure calculations that reveal the fundamentally different nature of nitrogen, phosphorous, and sulfur during carbon nanotube growth. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.