Abstract
Vertically aligned nitrogen-doped carbon nanotubes (CNTs) with modulated nitrogen content have been synthesized in a large scale by using spray pyrolysis chemical vapor deposition technique. The effects of nitrogen doping on the growth, structure and electrical performance of carbon nanotubes have been systematically examined. Field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman techniques have been employed to characterize the morphology, composition, and vibrational properties of nanotubes. The results indicate that the nitrogen incorporation significantly influences the growth rate, morphology, size and structure of nanotubes. Electrical measurement investigation of the nanotubes indicates that the change in electrical resistance increases with temperature and pressure as the nitrogen concentration increases inside the tubes. This work presents a versatile, safe, and easy way to scale up route of growing carbon nanotubes with controlled nitrogen content and modulated structure, and may provide an insight in developing various nitrogen-doped carbon-based nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.