Abstract
The groups of link bordism can be identified with homotopy groups via the Pontryagin-Thom construction. B.J. Sanderson computed the bordism group of 3 component surface-links using the Hilton-Milnor Theorem, and later gave a geometric interpretation of the groups in terms of intersections of Seifert hypersurfaces and their framings. In this paper, we geometrically represent every element of the bordism group uniquely by a certain standard form of a surface-link, a generalization of a Hopf link. The standard forms give rise to an inverse of Sanderson's geometrically defined invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.