Abstract
In this paper, a geometric approach to stable homotopy groups of spheres based on the Pontryagin–Thom construction is proposed. From this approach, a new proof of the Hopf-invariant-one theorem of J. F. Adams for all dimensions except 15, 31, 63, and 127 is obtained. It is proved that for n > 127, in the stable homotopy group of spheres Π n , there is no element with Hopf invariant one. The new proof is based on geometric topology methods. The Pontryagin–Thom theorem (in the form proposed by R. Wells) about the representation of stable homotopy groups of the real, projective, infinite-dimensional space (these groups are mapped onto 2-components of stable homotopy groups of spheres by the Kahn–Priddy theorem) by cobordism classes of immersions of codimension 1 of closed manifolds (generally speaking, nonoriented) is considered. The Hopf invariant is expressed as a characteristic class of the dihedral group for the self-intersection manifold of an immersed codimension-1 manifold that represents the given element in the stable homotopy group. In the new proof, the geometric control principle (by M. Gromov) for immersions in the given regular homotopy classes based on the Smale–Hirsch immersion theorem is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.