Abstract
Exaggerated beta oscillations (~13-30 Hz) observed in the cortical areas of the brain is one of the characteristics of disrupted information flow in the primary motor cortex in Parkinson's disease (PD). However, the mechanism underlying the generation of these enhanced beta rhythms remains unclear. The thalamo-cortex microcircuit (TCM) contains reciprocal synaptic connections that generate low frequency oscillations in the microcircuit in healthy conditions. Recent studies suggest that alterations in synaptic connections both within and between the cortex and thalamus play a critical role in the generation of pathological beta rhythms in PD. In this study, we examine this hypothesis in a spiking neuronal network model of the TCM. The model is compared and validated against neural firing patterns recorded in rodent models of PD from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.