Abstract
We study differential complexes of Kolmogorov–Alexander–Spanier type on metric measure spaces associated with unbounded non-local operators, such as operators of fractional Laplacian type. We define Hilbert complexes, observe invariance properties and obtain self-adjoint non-local analogues of Hodge Laplacians. For d-regular measures and operators of fractional Laplacian type we provide results on removable sets in terms of Hausdorff measures. We prove a Mayer–Vietoris principle and a Poincaré lemma and verify that in the compact Riemannian manifold case the deRham cohomology can be recovered.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have