Abstract
Abstract The surface, edge and corner effects have significant influences in the electrical and optical properties of silicon nano-structures. In this paper, a novel hierarchical temperature-related multi-scale model is presented based on the boundary Cauchy–Born method to investigate not only the surface but also the edge and corner effects in thermal properties of diamond-like structures such as silicon nano-structures at finite temperature. A combined finite element method and molecular dynamics are respectively employed in macro- and micro-scale levels. The temperature-related Cauchy–Born rule is applied using the Helmholtz free energy, as the energy density of equivalent continua relating to the Tersoff inter-atomic potential. The model employs radial quadratures at the surface, edge and corner elements as an indicator of material behavior. The capability of computational algorithm is illustrated by numerical simulation of a nano-scale cube at finite temperature and the results are compared with the atomistic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.