Abstract
A practical potential equation for mercury was developed, by incorporating the long-ranged interaction and multi-body effects into the temperature-dependent dispersion parameters, to describe the thermodynamic properties of the liquid-vapour equilibrium and adsorption in carbonaceous materials. The collision diameter (σ) decreases and the well depth of interaction energy (ε) increases with temperature, with the product σ6ε (a measure of attraction) decreasing with temperature. The critical temperature derived from this model, 1745 K, agrees well with the experimental value of 1751 K, and the wetting temperature of mercury on graphite was found to be 1600 K, supporting the fact that mercury does not wet carbon under ambient conditions. Furthermore, it was illustrated with mercury can fill ultrafine graphitic slit pores, whose widths less than 0.7 nm, under ambient temperatures, because of the enhancement of the solid-fluid potential and the strong intermolecular interactions, and the simulation results qualitatively agree well with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.