Abstract

The techno-economic analysis of a process to convert ethanol into H2 to be used as a fuel for PEM fuel cells of H2-powered cars was done. A plant for H2 production was simulated using experimental results obtained on monolith reactors for ethanol steam reforming and WGS steps. The steam reforming (Rh/CeSiO2) and WGS (Pt/ZrO2) monolith catalysts remained quite stable during long-term startup/shut down cycles, with no carbon deposition. The H2 production cost was significantly affected by the ethanol price. The monolith catalyst costs contribution was lower than that of conventional reactors. The H2 production cost obtained using the expensive Brazilian ethanol price (0.81 US$/L ethanol) was US$ 8.87/kg H2, which is lower than the current market prices (US$ 13.44/kg H2) practiced at H2 refueling stations in California. This result showed that this process is economically feasible to provide H2 as a fuel for H2-powered cars at competitive costs in refueling stations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call