Abstract

The paint shop is the most energy-intensive process in an automotive manufacturing plant, with air management systems that supply air to paint booths consuming the most energy. These systems are crucial for temperature and humidity control, in which they ensure the quality of the final product by preventing paint defects and thus avoid the additional cost of reworking. This is especially true for water-based paints, in which evaporation and film formation processes are influenced by the temperature and humidity of the surrounding air. This study aims to investigate the incorporation of liquid desiccant technology into a conventional air management system for paint shops operating in different climates, which presents the novelty of the study. The technology is promising because it can regulate humidity, act as a dehumidifier or humidifier depending on the demand and stores energy in a thermo-chemical form. In addition, waste heat sources available in the paint shop can be used for the regeneration of the liquid desiccant solution. The techno-economic evaluation of this novel process indicates that the proposed system can control the temperature and humidity of the supply air within the range required for optimal painting and achieve significant energy savings in both cold and hot/humid climates, with a reduction of 44.4% and 33.6% of the energy cost compared to the conventional operation and a payback period of 6.15 and 5.74 years respectively, using calcium chloride as the desiccant solution. The sensitivity analysis investigates the effect of the energy and carbon price on the performance of the system. It is concluded that the integration of liquid desiccant technology into conventional air management systems for paint booths has a huge potential to increase the energy-efficiency of automotive painting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call