Abstract

"Optimal systems" of similarity solutions of a given system of nonlinear partial (integro-)differential equations which admits a finite-dimensional Lie point symmetry group Gare an effective systematic means to classify these group-invariant solutions since every other such solution can be derived from the members of the optimal systems. The classification problem for the similarity solutions leads to that of "constructing" optimal subalgebraic systems for the Lie algebra Gof the known symmetry group G. The methods for determining optimal systems of s-dimensional Lie subalgebras up to the dimension r of Gvary in case of 3 ≤ s ≤ r, depending on the solvability of G. If the r-dimensional Lie algebra Gof the infinitesimal symmetries is nonsolvable, in addition to the optimal subsystems of solvable subalgebras of Gone has to determine the optimal subsystems of semisimple subalgebras of Gin order to construct the full optimal systems of s-dimensional subalgebras of Gwith 3 ≤ s ≤ r. The techniques presented for this classification process are applied to the nonsolvable Lie algebra Gof the eight-dimensional Lie point symmetry group Gadmitted by the three-dimensional Vlasov-Maxwell equations for a multi-species plasma in the non-relativistic case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call