Abstract

Abstract Lie group analysis is a powerful tool for obtaining exact similarity solutions of nonlinear (integro-) differential equations. In order to calculate the group-invariant solutions one first has to find the full Lie point symmetry group admitted by the given (integro-)differential equations and to determine all the subgroups of this Lie group. An effective, systematic means to classify the similarity solutions afterwards is an "optimal system", i.e. a list of group-invariant solutions from which every other such solution can be derived. The problem to find optimal systems of similarity solutions leads to that to "construct" the optimal systems of subalgebras for the Lie algebra of the known Lie point symmetry group. Our aim is to demonstrate a practicable technique for determining these optimal subalgebraic systems using the invariants relative to the group of the inner automorphisms of the Lie algebra in case of a finite-dimensional Lie point symmetry group. Here, we restrict our attention to optimal subsystems of solvable Lie subalgebras. This technique is applied to the nine-dimensional real Lie point symmetry group admitted by the two-dimensional non-stationary ideal magnetohydrodynamic equations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.