Abstract

Forecasting energy consumption is a major concern for policymakers, oil industry companies, and many other associated businesses. Though there exist many forecasting tool, selecting the most appropriate one is critical. GM(1,1) has proven to be one of the most successful forecasting tool. GM(1,1) does not require any specific information and can be adapted to predict energy consumption using a minimum of four observations. Unfortunately, GM(1,1) on its own will generate too large forecast errors because it performs well only when data follow an exponential trend and should be implemented in a political-socio-economic free environment. To reduce these short-comings, this paper proposes a new GM(1,n) convolution model optimized by genetic algorithms integrating a sequential selection mechanism and arc consistency, abbreviated Sequential-GMC(1,n)-GA. The new model, like some recent hybrid versions, is robust and reliable, with MAPE of 1.44%, and RMSE of 0.833.•Modification, extension and optimization of grey multivariate model is done.•The model is very generic can be applied to a wide variety of energy sectors.•The new hybrid model is a valid forecasting tool that can be used to track the growth of households’ energy demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.