Abstract

Reactivities of bimetallic clusters can be controlled by varying their composition, making them potentially valuable as catalysts and for use in elucidating the reactivities of such subnanoscale surfaces. A dual rod laser vaporization source coupled to a fast flow reactor is developed for the study of bimetallic clusters and their reactions. In order to establish the versatility of the technique, the results of studies are presented in which Nb/Al clusters are formed in two plasmas induced by the second harmonic (532 nm photons) of a single Nd:YAG laser and then detected by a quadrupole mass spectrometer. The beam from the laser is split and then focused onto each rod, allowing the mixing ratio within the cluster to vary by altering the laser fluence on each rod. With a low fluence on the Nb rod and a high fluence on the Al rod, an Al rich cluster distribution is formed, NbAlm− (m=2–20), and Alm− (m=5–31). By increasing the fluence on the Nb rod and decreasing the fluence on the Al rod, a Nb rich cluster distribution is formed, NbnAlm− (n=3–8 and m=1–3), NbnOAlm − (n=3–8 and m=1–5), and NbnO− (n=3–8). Additional characterization is also performed on V/Al clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.