Abstract

AbstractA compact, constant stress intensity factor, side grooved, tapered double-cantilever-beam (T-DCB) specimen has been designed for measuring elevated temperature creep and fatigue crack growth rates. This specimen is much smaller than the standard DCB specimen generally used for studying corrosion fatigue in airframe materials and it can be easily accommodated in standard furnaces generally used in elevated-temperature fracture mechanics testing. The specimen possesses a constant-K region of 30 mm. This constant-K crack length range was first established analytically through detailed two- and three-dimensional finite-element analyses and the finite-element calculations were further verified experimentally through quantitative fractographic analysis using the striation measurement technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.