Abstract
We present an exploration of cultural norms surrounding online disclosure of information about one's interpersonal relationships (such as information about family members, colleagues, friends, or lovers) on Twitter. The literature identifies the cultural dimension of individualism versus collectivism as being a major determinant of offline communication differences in terms of emotion, topic, and content disclosed. We decided to study whether such differences also occur online in context of Twitter when comparing tweets posted in an individualistic (U.S.) versus a collectivist (India) society. We collected more than 2 million tweets posted in the U.S. and India over a 3 month period which contain interpersonal relationship keywords. A card-sort study was used to develop this culturally-sensitive saturated taxonomy of keywords that represent interpersonal relationships (e.g., ma, mom, mother). Then we developed a high-accuracy interpersonal disclosure detector based on dependency-parsing (F1-score: 86%) to identify when the words refer to a personal relationship of the poster (e.g., "my mom" as opposed to "a mom"). This allowed us to identify the 400K+ tweets in our data set which actually disclose information about the poster's interpersonal relationships. We used a mixed methods approach to analyze these tweets (e.g., comparing the amount of joy expressed about one's family) and found differences in emotion, topic, and content disclosed between tweets from the U.S. versus India. Our analysis also reveals how a combination of qualitative and quantitative methods are needed to uncover these differences; Using just one or the other can be misleading. This study extends the prior literature on Multi-Party Privacy and provides guidance for researchers and designers of culturally-sensitive systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.