Abstract
This paper investigates the identification and modeling of a greenhouse's climate using real climate data from a greenhouse installed in the LAPER laboratory in Tunisia. The objective of this paper is to propose a solution to the problem of nonlinear time-variant inputs and outputs of greenhouse internal climate. Combining fuzzy logic technique with Least Mean Squares (LMS), a robust greenhouse climate model for internal temperature prediction is proposed. The simulation results demonstrate the effectiveness of the identification approach and the power of the implemented Takagi-Sugeno Fuzzy model-based algorithm.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have