Abstract
In this paper we propose a clustering procedure aimed at grouping time series with an association between extremely low values, measured by the lower tail dependence coefficient. Firstly, we estimate the coefficient using an Archimedean copula function. Then, we propose a dissimilarity measure based on tail dependence coefficients and a two-step procedure to be used with clustering algorithms which require that the objects we want to cluster have a geometric interpretation. We show how the results of the clustering applied to financial returns could be used to construct defensive portfolios reducing the effect of a simultaneous financial crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.