Abstract

The human pupillary control system is a paradigm for linearized biological control systems. It also exhibits a series of interesting nonlinear behaviors, particularly asymmetry, "pupillary escape," and "pupillary capture." We present a nonlinear model in which a signal dependent upon pupil size is fed back internally to cause a change in system parameters related to gains and rates of light adaptation. The model was simulated on a digital computer, a variety of experimental data was well matched, and improvements over previous pupil models demonstrated. A candidate physiological mechanism for adaptive components of the model might have the form of an inverse "Henneman coded" neuronal pool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.