Abstract

This paper presents a novel systemic algorithm based on conservative power pinch analysis principles using a computationally efficient insight-based binary linear programming optimization technique in a model predictive framework for integrated load shifting and shedding in an isolated hybrid energy storage system. In a receding 24-hour predictive horizon, the energy demand and supply are integrated via an adaptive power grand composite curve tool to form a diagonal matrix of predicted hourly minimum and maximum energy constraints. The intgrated energy constraints must be satisfied recursively by the binary optimisation to ensure the energy storage’s state of charge only operates within 30% and 90%. Hence, the control command to shift or shed load is contingent on the energy storage state of the charge violating the operating constraints. The controllable load demand is shifted and/or shed to prevent any violations while ensuring energy supply to the most critical load without sacrificing the consumers' comfort. The proposed approach enhances efficient energy use from renewable energy supply as well as limits the use of the Hydrogen resources by a fuel cell to satisfy controllable load demands which can be shifted to periods in the day with excess renewable energy supply.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call