Abstract

In recent years, there has been a growing increase of the cooling demand in many parts of the world, which has led to major energy problems. In this context, solar assisted absorption cooling systems have emerged as a promising alternative to conventional vapor compression air conditioning systems, given the fact that in many cases the cooling demand coincide with the availability of solar radiation. In this work, we present a decision-support tool based on mathematical programming for the design of solar assisted absorption cooling systems. The design task is formulated as a bi-criteria mixed-integer nonlinear programming (MINLP) optimization problem that accounts for the minimization of the total cost of the cooling system and the associated environmental impact measured over its entire life cycle. The capabilities of the proposed method are illustrated in a case study that addresses the design of a solar assisted ammonia-water absorption cycle considering weather data of Barcelona (Spain).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.