Abstract
This work presents a multi-period and multi-objective optimization based on mathematical programming of solar assisted absorption cooling systems. Seven solar collector models combined with a gas fired heater and an absorption cooling cycle are considered. The optimization task is formulated as a multi-objective multi-period mixed-integer nonlinear programming (MINLP) problem that accounts for the minimization of the total cost of the cooling system and the associated environmental impact. The environmental performance is measured following the Life Cycle Assessment (LCA) principles. The capabilities of the proposed method are illustrated in a case study that addresses the design of a solar assisted ammonia-water absorption cooling system using the weather conditions of Tarragona (Spain).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.