Abstract
Abstract Background Unsupervised machine learners have been increasingly applied to software defect prediction. It is an approach that may be valuable for software practitioners because it reduces the need for labeled training data. Objective Investigate the use and performance of unsupervised learning techniques in software defect prediction. Method We conducted a systematic literature review that identified 49 studies containing 2456 individual experimental results, which satisfied our inclusion criteria published between January 2000 and March 2018. In order to compare prediction performance across these studies in a consistent way, we (re-)computed the confusion matrices and employed the Matthews Correlation Coefficient (MCC) as our main performance measure. Results Our meta-analysis shows that unsupervised models are comparable with supervised models for both within-project and cross-project prediction. Among the 14 families of unsupervised model, Fuzzy CMeans (FCM) and Fuzzy SOMs (FSOMs) perform best. In addition, where we were able to check, we found that almost 11% (262/2456) of published results (contained in 16 papers) were internally inconsistent and a further 33% (823/2456) provided insufficient details for us to check. Conclusion Although many factors impact the performance of a classifier, e.g., dataset characteristics, broadly speaking, unsupervised classifiers do not seem to perform worse than the supervised classifiers in our review. However, we note a worrying prevalence of (i) demonstrably erroneous experimental results, (ii) undemanding benchmarks and (iii) incomplete reporting. We therefore encourage researchers to be comprehensive in their reporting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.