Abstract

Software defect prediction is an important aspect of software development, as it helps developers and organizations to identify and resolve bugs in the software before they become major issues. In this paper, we explore the use of machine learning algorithms for software defect prediction. We discuss the different types of machine learning algorithms that have been used for software defect prediction and their advantages and disadvantages. We also provide a comprehensive review of recent studies that have used machine learning algorithms for software defect prediction. The paper concludes with a discussion of the challenges and opportunities in using machine learning algorithms for software defect prediction and the future directions of research in this field. This paper surveys the existing literature on software defect prediction, focusing specifically on deep learning techniques. Compared to existing surveys on the topic, this paper offers a more in-depth analysis of the strengths and weaknesses of deep learning approaches for software defect prediction. It explores the use of LSTMs for this task, which have not been extensively studied in previous surveys. Additionally, this paper provides a comprehensive review of recent research in the field, highlighting the most promising deep learning models and techniques for software defect prediction. The results of this survey demonstrate that LSTM-based deep learning models can outperform traditional machine learning approaches and achieve state-of-the-art results in software defect prediction. Furthermore, this paper provides insights into the challenges and limitations of deep learning approaches for software defect prediction, highlighting areas for future research and improvement. Overall, this paper offers a valuable resource for researchers and practitioners interested in using deep learning techniques for software defect prediction..

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.