Abstract

The existence of indoor air pollutants—such as ozone, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide, particulate matter, and total volatile organic compounds—is evidently a critical issue for human health. Over the past decade, various international agencies have continually refined and updated the quantitative air quality guidelines and standards in order to meet the requirements for indoor air quality management. This paper first provides a systematic review of the existing air quality guidelines and standards implemented by different agencies, which include the Ambient Air Quality Standards (NAAQS); the World Health Organization (WHO); the Occupational Safety and Health Administration (OSHA); the American Conference of Governmental Industrial Hygienists (ACGIH); the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); the National Institute for Occupational Safety and Health (NIOSH); and the California ambient air quality standards (CAAQS). It then adds to this by providing a state-of-art review of the existing low-cost air quality sensor (LCAQS) technologies, and analyzes the corresponding specifications, such as the typical detection range, measurement tolerance or repeatability, data resolution, response time, supply current, and market price. Finally, it briefly reviews a sequence (array) of field measurement studies, which focuses on the technical measurement characteristics and their data analysis approaches.

Highlights

  • The World Health Organization (WHO) reported that poor air quality caused 4.2 million deaths in 2016, of which, primarily, 17% were due to strokes, 25% were due to COPD, and 26% were due to respiratory disease [1]

  • This paper first provides a systematic review of the existing air quality guidelines and standards implemented by different agencies, which include the Ambient Air Quality Standards (NAAQS); the World Health Organization (WHO); the Occupational Safety and Health Administration (OSHA); the American Conference of Governmental Industrial Hygienists (ACGIH); the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); the National Institute for Occupational Safety and Health (NIOSH); and the California ambient air quality standards (CAAQS)

  • PM2.5 associated with infiltration of TRAP; PM10 was significantly higher than the outdoor level; Natural ventilation as a key role dropped IAQ of the aquatic center

Read more

Summary

Introduction

The WHO reported that poor air quality caused 4.2 million deaths in 2016, of which, primarily, 17% were due to strokes, 25% were due to COPD, and 26% were due to respiratory disease [1]. Klas et al [25] found that SBS is related to temperature, air intake, building dampness, exposure to static electricity, indoor smoke, noise, and the building’s age.

Common Air Pollutants that Affect IAQ
Air Quality Guidelines
Air Quality Measurements and Data Analysis
Main Results
Air Quality Sensors
Technology of LCAQS
Performance Evaluation of LCAQS
Uncertainties in LCAQS
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call