Abstract

A systematic neural-fuzzy modeling framework that includes the initial fuzzy model self-generation, significant input selection, partition validation, parameter optimization, and rule-base simplification is proposed in this paper. In this framework, the structure identification and parameter optimization are carried out automatically and efficiently by the combined use of a sell-organization network, fuzzy clustering, adaptive back-propagation learning, and similarity analysis-based model simplification. The proposed neuro-fuzzy modeling approach has been used for nonlinear system identification and mechanical property prediction in hot-rolled steels from construct composition and microstructure data. Experimental studies demonstrate that the predicted mechanical properties have a good agreement with the measured data by using the elicited fuzzy model with a small number of rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.