Abstract

Abstract A systematic method is presented for the integration of smart (active) materials based actuators into the structure of mechanical systems in general and mechanisms with closed-loop chains in particular for the purpose of modifying the output motion of the system. In the resent study, the method is applied to a four-bar linkage mechanism with a constant input velocity for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. For mechanisms with rigid links, the primary source of high harmonic motions is the nonlinearity of the kinematics of the closed-loop chain. The usually less prominent high harmonic motions due to joint and/or structural flexibility may be eliminated in a similar manner and will be addressed in future publications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call