Abstract

A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with greater precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.