Abstract

We systematically construct a distinct class of complex potentials including parity-time () symmetric potentials for the stationary Schrödinger equation by using the soliton and periodic solutions of the four integrable real nonlinear evolution equations (NLEEs), namely the sine-Gordon (sG) equation, the modified Korteweg–de Vries (mKdV) equation, combined mKdV–sG equation and the Gardner equation. These potentials comprise of kink, breather, bion, elliptic bion, periodic and soliton potentials which are explicitly constructed from the various respective solutions of the NLEEs. We demonstrate the relevance between the identified complex potentials and the potential of the graphene model from an application point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.