Abstract

We will show that there is a universal connection between the achievable closed-loop dynamics and the corresponding feedback controller that produces it. This connection shows promise to lead to new methods for robust nonlinear control in discrete-time. We will show that, given a causal nonlinear discrete-time system and controller, the resulting closed-loop is a solution to a nonlinear operator equation. Conversely, any causal solution to the nonlinear operator equation is a closed-loop that can be achieved by some causal controller. Moreover, solutions can be substituted into a simple dynamic controller structure, which we will refer to as a system level controller, to obtain an implementation of the unique corresponding feedback controller. System level controllers could be an attractive approach for robust nonlinear control, as we will show that even when they are parametrized with approximate solutions to the operator equation, they can still produce robustly stable closed loops. We will provide theoretical results that state how grade of approximation and robust stability of the closed loop are related. Additionally, we will explore some first applications of our results. Using the cart-pole system as an illustrative example, we will derive how to design robust discrete-time trajectory tracking controllers for continuous-time nonlinear systems. Secondly, we will introduce a particular class of system level controller that shows to be particularly useful for linear systems with actuator saturation and state constraints. The special structure of the controller allows for simple stability and performance analysis of the closed-loop in presence of disturbances. A particular application to large-scale systems with actuator saturation and safety constraints is presented in our companion paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.