Abstract

The inspection of moving specular freeform surfaces is an industrial challenge so far largely unsolved, even for the qualitative case, i.e. the mere determination of the presence of surface defects as opposed to the quantitative reconstruction of a surface. Products produced in high quantities therefore still have to be inspected manually which is labour intensive, expensive, monotonous and subjective. We propose a novel hardware setup and methodology to overcome this shortfall. The reflection of a line laser from a moving surface is captured on a translucent screen; surface defects show as gaps or bulges. Two methods to extract the resulting information are proposed and ways for its interpretation are shown. The proposed method is very cost effective and easy to implement. While limitations to surface geometry exist and absolute precision is not achievable, it is shown that the system is able to reliably detect, characterise and localise a range of typical surface defects on moving glazed ceramic tiles, our example application. The method is however applicable to a wide range of hybrid and specular surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.