Abstract
A great many people suffer from neurological movement disorders that render typical hardware interface devices ineffective. A need exists for a universal interface device that can be trained to accept a wide range of inputs across varying types and severities of movement disorders. In this regard, this paper details the design, testing and optimization of an accelerometer-based gesture identification system. A Bluetooth-enabled IMU mounted on the wrist provides hand motion trajectory information to a local terminal. Several techniques are applied to decrease the intra-class variance and reduce classifier complexity including filtering, segmentation and temporal scaling. Datasets consisted of 520 training samples, 260 validation samples and a further 520 testing samples. A multi-layer feed forward artificial neural network (ML-FFNN) was used to classify the input space into 26 different classes. Initial system accuracy, using arbitrary hyperparameters was 77.69% with final optimized accuracy at 99.42%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.