Abstract
The Sea Lamprey International Symposium (SLIS) has provided a broad spectrum of facts and speculations for consideration in future research and management programs. Many aspects of the laboratory biology and field life history of the sea lamprey (Petromyzon marinus) are now well understood. There is little question that it can now be controlled by chemical larvicides, and perhaps in the future by more efficient integrated control programs. There is correlative evidence (wounds, scars, catch curves) that lamprey caused major mortalities in some fish species, and that control in conjunction with stocking has lead to remarkable recoveries of salmonid stocks in the Great Lakes. However, there are great gaps in understanding about just what the lamprey does under field conditions, and it is not yet possible to reject several hypotheses that assign lamprey a minimum or transient role in fish stock changes. Further studies on details of lamprey biology are, in themselves, unlikely to fill the gaps; one alternative is to conduct a large-scale field experiment involving cessation of lamprey control while holding other factors (fishing, stocking) as steady as possible. If it is decided to proceed with management on the assumption that lamprey are important, without the major field experiments to confirm it, then at least the following steps should be taken: (1) the chemical treatment program should be reviewed in detail, with a view to finding treatment schedules that will minimize frequency and dose rates for lampricide applications; (2) pilot studies on alternative control schemes (sterile male, attractants, barriers) should only be funded if they are statistically well designed (several replicate and control streams), and involve quantitative monitoring of lamprey spawning success and subsequent total production of transforming larvae; (3) the lake trout (Salvelinus namaycush) stocking program should be maintained at its present level, and should involve diverse genotypes rather than a few hatchery strains; (4) growth in the sport fisheries for lake trout should be curtailed, and commercial fisheries should not yet be permitted; (5) a multispecies harvesting policy should be designed that takes into account the buffering effect of each species on lamprey mortality suffered by others (i.e. should some species not be harvested at all, and viewed instead as buffers for more valuable species?); and (6) a program should be developed for restoring, by culture if necessary, native forage species in case the introduced smelt and alewife should collapse under pressure from fishing and prédation by the growing salmonid community.Key words: sea lamprey, proposed research, fishery management, mathematical models, population dynamics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.