Abstract
Word reordering is one of the challengeable problems of machine translation. It is an important factor of quality and efficiency of machine translation systems. In this paper, we introduce a novel reordering model based on an innovative structure, named, phrasal dependency tree. The phrasal dependency tree is a modern syntactic structure which is based on dependency relationships between contiguous non-syntactic phrases. The proposed model integrates syntactical and statistical information in the context of log-linear model aimed at dealing with the reordering problems. It benefits from phrase dependencies, translation directions (orientations) and translation discontinuity between translated phrases. In comparison with well-known and popular reordering models such as distortion, lexicalised and hierarchical models, the experimental study demonstrates the superiority of our model in terms of translation quality. Performance is evaluated for Persian → English and English → German translation tasks using Tehran parallel corpus and WMT07 benchmarks, respectively. The results report 1.54/1.7 and 1.98/3.01 point improvements over the baseline in terms of BLEU/TER metrics on Persian → English and German → English translation tasks, respectively. On average our model retrieved a significant impact on precision with comparable recall value with respect to the lexicalised and distortion models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.